Showing off some vintage 1970s LEDs

After seeing this video, I was inspired to hunt down and purchase some early-model LEDs. It turns out you can get Soviet-era gold-plated LEDs from the 1970s on eBay, so I grabbed some of these and made a little thing to show them off.

I did a bit of research to figure out what I had, including browsing scans of 70s Polish datasheets and translating a Polish Wikipedia article to research the now-defunct manufactuer, Unitra CEMI.

The LEDs came from a seller in the Czech Republic and arrived via registered mail (the kind you have to go to your post office to sign for). The actual LEDs are gold plated, and you can see the actual junction clearly inside the lens.

I put two of them into a breadboard with an ATtiny85 programmed in Arduino to do a simple alternating blink pattern. I designed a 3D-printed display to hold it, spliced some USB to power it, and made a little label to explain what the thing was, and now I have a neat little thing to put on the shelf.

 

Yet more abstract images

I had some new ideas on generating pictures based on Z-order curves. For speed this time, I wrote some truly horrific but decently fast C code to render stuff. I also re-did some of my earlier Hibert curve stuff in C.

The awful code is here.

Pictures below. They look best zoomed all the way in, and the jumbo ones make good wallpapers if set to ‘center’ (no scaling), even on big multi-monitor setups.









An Ocean-diving Rocket Pod Control System

Sorry I haven’t posted more. I have done some cool projects, but finding time to post has been hard. To help fill that gap, here’s a report I wrote up detailed a small chapter in my involvement with Team Blue Devil Ocean Engineering, which is Duke’s entry into the Ocean Discovery XPRIZE, a world-wide contest to develop the technology to map 500 km^2 of ocean floor in 24 hours. It presupposes some knowledge about the project, which you can find in this brochure or even these slides, or you can just dive in and have fun gawking at this crazy thing we built, sunk 2km deep in the ocean, retrieved, then debugged.

Details of an intense 48-hour effort to build an deep-ocean-survivable Arduino control circuit for underwater rockets is after the break. It was written as an after-action report for the project, so the language is a bit drier than usual, but I think it’s still a fun read.

Continue reading

Cheap 3D pen actually works

I’m shocked to say this, but the cheap $20 knockoff “3D pens” from China actually work, at least as well as you’d expect such a thing to work.

These pens are basically little 3D printer heads in pen form that let you extrude PLA or ABS plastic in 3D space. It heats in about 30 seconds, extrudes with good consistency with controllable speed, runs on the same cheap 1.75mm filament as a printer, and the extruded plastic can actually stand up. It works best you have a fan going over the work area to cool the extruded stuff faster, and you need a bit of a blob for the base to keep it stuck, but you can actually draw into 3D space with it. At the base, getting adhesion is similar to 3D printing: masking tape (especially cleaned with alcohol) is a good surface.

I’m not sure how many 3D creations I’d make from scratch with this, but it seems absolutely fantastic for touching up or repairing 3D prints.

UPDATE: You can even make (very) light-duty brackets.

UPDATE 2: You can also use it to make fridge magnets of dubious artistic merit.

 

Asinine “Cordless Broom” restored

2016-10-12-23-49-53bA few years ago I got this ridiculous thing from a thrift store: the Black and Decker “Cordless Broom” (differentiated from regular brooms, which I guess somehow have cords???).

It’s basically a really weak leaf blower, but it looks like a giant bazooka, and it was $5 at the time.

versapakIt runs on obsolete “VersaPak” batteries, which were part of a proprietary tool battery system from at least 10 or 15 years ago. I had an old electric screwdriver that ran on one of these around then. Each battery was a 3.6V NiCd pack, and this unit uses two of them at once to run at 7.2V.

I wanted to revive it, but I wasn’t going to be hunting down decade-old batteries on ebay to do so. I decided to use 18650 rechargable Li-ion cells (the same kind used in laptop batteries) because they’re 3.7V each (close to the original’s 3.6V) and I had a bunch lying around.

I popped the housing apart, drilled a hole in the side, and added a 2.1×5.5mm panel-mount female DC barrel jack that hooks to where the VersaPaks would connect in. Now I could power it from my bench power supply to verify it worked, and it did.

My first attempt at a battery solution was a single pair of 18650 cells in a cheap ebay case. This worked, except the wires that came pre-soldered to the battery case were a very small gauge, and I actually felt these wires heating up when I used it. This was no good – I was a bunch of my power to wire resistance! Also, the thing ran the pair of 18650s down pretty quick.

I don’t have any pictures of any of that because I did that part a long time ago, then lost interest. Recently, I felt like doing a little project, and the thing was sitting here, so I finally finished it.

2016-10-12-23-49-21bI got two new two-cell battery cases, and snipped their tiny pre-soldered wires. I soldered on good 22 AWG wires direct to the outputs, and hot-glued the wires for mechanical strength. I ran both sets of battery pack wires to a single male DC barrel plug, so as to run two pairs in parallel (2S2P in battery-people speak). I screwed the two cases to the housing (there’s plenty of room to screw into where the VersaPaks used to plug in) and plugged it in, and presto. No more warm wires and much better battery life.

I like this thing because it can quickly blow sawdust and stuff in the shop without sending screws and heavier stuff flying around. Also, Reginald is terrified of it.

2016-10-12-23-50-48b